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Abstract

This paper presents a cryptanalytic study upon the modulus N = p2q consisting of two large
primes that are in the same-bit size. In this work, we show that the modulusN is factorable if e
satisfies the Diophantine equation of the form ed− k(N − (ap)2 − apbq+ ap) = 1where a

b
is an

unknown approximation of q
p
. Our attack is feasible when some amount of Least Significant Bits

(LSBs) of ap and bq is known. By utilising the Jochemsz-May strategy as our main method, we
manage to prove that the modulusN can be factored in polynomial time under certain specified
conditions.

Keywords: partial-key exposure attack; integer factorization problem; Jochemsz-May strategy;
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1 Introduction

In 1978, the world of cryptographywas astounded by the invention of the first practical public-
key cryptosystem known as RSA [16]. Ever since its existence, RSA is embedded in millions of
digital applications with the objectives to provide confidentiality, integrity, authenticity and disal-
low repudiation. Among essential features of the RSA are the public-key pair (N, e) and private-
key tuple (p, q, d, φ(N)). The RSAmodulusN is the product of two large balanced primes p and q,
while e ≥ 3 satisfies gcd (e, φ(N)) = 1; φ(N) is the Euler’s totient function and d ≡ e−1 mod φ(N).
The public parameter e is needed for the encryption process given by C ≡Me (modN)whilst the
private parameter d is utilized in the decryption process given byM ≡ Cd (modN). The security
of the RSA relies on the difficulty to solve these hard problems, which are the integer factorization
problem, modular e-th root problem and key equation problem. Practically, these problems are
considered hard since it should take the best computers available today billions of years to solve.
Thus, the RSA is maintained secure until the invention of the so-called practical quantum com-
puter.

The cost incurred for the computational process depends on the size of the parameters e and d
as both are utilized in themodular exponentiation process. As an effort to decrease the decryption
cost, one might want to choose a small exponent d. Nevertheless, [20] proved that by utilizing a
small d, where d < 1

3N
1
4 would result in d being recovered. This was made possible through the

continued fractions expansion method. The success achieved by [20] prompted other researchers
to investigate this weakness further and increase the unsafe bound of d. For instance, [4] enhanced
the bound proposed in [20] up to d < N0.292 by utilizing the lattice basis reduction method.

Another potential weakness of the RSA cryptosystem is the partial key exposure, which occurs
when one can obtain some relevant bits of the private-key d or its prime factors. [5] presented this
type of attack and proved that by having only a quarter of the information is sufficient to reveal the
private parameter d. They utilized the method from [7] to achieve their goal. Later, [18] also an-
alyzed this type of weakness and showed that RSA is susceptible if the prime factors share a large
number of LSBs such that |p − q| = 2mu with 2m = Nα. They proved that RSA is insecure when
d < Nδ for δ < 7

6 −
2
3α −

1
3

√
(1− 4α)(1− 4α+ 6γ). In the subsequent years, [15] contributed to

this angle of analysis by proposing an attack on partial key exposure. Considering the case from
the relation ed−k(N +1−ap− bq) = 1where a

b is an unknown approximation of qp , Nitaj’s attack
worked when certain amount of the LSBs of ap and bq is known.

The researchers made various kinds of attempts to increase the efficiency of key generation
and decryption algorithms. The usage of multi-power RSA whereby the modulus N = pq was
modified into the form N = prq has been proven useful to achieve the goal provided via the Chi-
nese Remainder Theorem [10]. The cryptosystem designed by [19] is the instance that utilised
this fact, and the author managed to show that it is indeed less expensive compared to standard
RSA.

Hence, the cryptanalytic study upon the multi-power RSA becomes crucial. [6] proved that
N = prq could be factored when the size of r is approximate to the size of log p. This became a
catalyst for the researchers to conduct more attacks upon this type of cryptosystem. For example,
[14] proved thatN = prq is more insecure thanN = pq. [17] described his proof that by applying
lattice reduction techniques, one can factor N = prq provided d < N0.395. A year later, [13] also
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proposed an attack onN = prq, but they onlymanaged to improve bound from [14]. Nonetheless,
there are also other attacks such as [2] and [1] that conducted their attacks, particularly on the
modulus N = p2q, and they showed that N could be factored provided certain conditions must
be fulfilled.

Our contributrion. In this article we report Nitaj’s attack on the modulus N = p2q when the
amount of sharing bits of LSBs between the value of ap and bq is known. We consider the value of
e satisfying the equation ed − k(N − (ap)2 − apbq + ap) = 1. By utilising the method from [11],
we show that N is factorable if

δ <
91

135
+

29

45
β − 44

45
α− 2

3
γ − 2

135

√
2(3α− 3β + 1)(−84α+ 45γ + 39β − 28).

The paper is organized as follows. Section 2 contains the tools and some essential lemmas that
are needed to prove our theorem. Section 3 and 4 present the result of our attack and comparison
table of our boundwith the previous attacks, respectively. Finally, we conclude ourwork in Section
5.

2 Preliminaries

This section provides several results that will be used in the rest of the paper which also aided
us to construct the new attack later.

2.1 Lattice

Letn and k be the element ofZ+ withn is less than or equal to k. Let y1, . . . , yn be a set of vectors
that are linearly independent in R. A lattice C is built by a set of linear combination y1, . . . , yn. The
general form of the lattice and its determinant is written as follows;

C =


n∑
j=1

xjyj |xj ∈ Z

 , det(C) =
√
det(Y TY ),

where n is the dimension and Y is the matrix of basis vector yj . If the value of n is equal to k, then
the lattice is said to be full ranked lattice. A lattice is a powerful tool in the development of either
cryptography and cryptanalysis field. One of the significant applications of the lattice is the LLL
algorithm. It was invented in 1982 by [12] purposely to produce a short basis vector in polynomial
time. The following theorem shows the bounds for the reduced vectors.

Theorem 2.1. Let C be lattice with the dimension of n with a basis vectors v1, . . . , vn. The LLL algorithm
yields a reduced basis b1, . . . , bn that satisfies this inequalities

b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn ≤ 2
n(n−1)

4(n+1−k) det(C)
1

n+1−k ,

for all 1 ≤ n ≤ k.
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It was noticed by Coppersmith that the algorithm is a fundamental tool to solve lattice prob-
lems. Specifically, [7] provided a solution on how to find small roots of a modular polynomial.
The author of [7] used the LLL algorithm to find a reduced basis of a polynomial. Later, [9] re-
formulated Coppersmith’s idea and hence described the following theorem.

Theorem 2.2. [9] Let h(y1, . . . , yk) ∈ Z[y1, . . . , yk] be a polynomial withn terms. Let h(y(0)1 , . . . , y
(0)
j ) ≡

0 (mod R) where
∣∣∣y(0)j ∣∣∣ < Yj for j = 1, . . . , k and h(y1Y1, . . . , ykYk) < R√

ω
. Then h(y(0)1 , . . . , y

(0)
k ) =

0 ∈ Z is holds.

Note that our new attack depends on a well-known assumption which was also being applied
by some previous attacks such as [4], [13], and [17].

Assumption 1.The LLL algorithm yields a number of polynomials that are coprime to each other.The roots
of these polynomials can be extracted via resultant technique [8].

2.2 Approximation of the Primes

The following lemma by [3] shows an approximation of the size of primes p and q when the
modulus N = p2q.

Lemma 2.1. [3] Suppose N = p2q with q < p < 2q. Then

2−1/3N1/3 < q < N1/3 < p < 21/3N1/3.

3 Our New Attack

In this section, the case of the generalized RSA equation ed − k(N − (ap)2 − apbq + ap) = 1
where a

b is the unknown approximation of qp is considered. Briefly, we utilise the known informa-
tion of LSBs of the prime factors, insert them into our equation and build an integer multivariate
polynomial. Then we use the Jochemsz-May strategy to find the roots of the polynomial and thus
factor the modulus N . Our proposed method is formally described as follows.

Theorem 3.1. LetN = p2q be the modulus of the RSA. Suppose ap+ bq = N1/3+α. Let ap = 2sp1 + u0
and bq = 2sq1 + v0 where s, u0, v0 are knowns with 2s = Nβ and a

b where a, b < Nα is an unknown
approximation of qp . Let e < Nγ , d < N δ and k is an element of Z+ that satisfy an equation

ed− k(N − (ap)2 − apbq + ap) = 1.

Then, N is factorable if

δ <
91

135
+

29

45
β − 44

45
α− 2

3
γ − 2

135

√
2(3α− 3β + 1)(−84α+ 45γ + 39β − 28).
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Proof. We have variant of RSA key equation where ed− k(N − (ap)2 − (ap)(bq) + (ap)) = 1. First,
substitute the value of ap = 2sp1 + u0 and bq = 2sq1 + v0. Then, by expanding the equation, we
obtain

ed− k(N − (2sp1 + u0)
2 − (2sp1 + u0)(2

sq1 + v0) + (2sp1 + u0)) = 1,

ed− k(N − 22sp21 − 2s+1u0p1 − u20 − 22sp1q1 − 2sv0p1 − 2su0q1 − u0v0 + 2sp1 + u0) = 1.

Rearrange the equation, we would have

ed− (N − u20 − u0v0 + u0)k + 2s(2sp21 − p1 + 2sp1q1)k + 2s(2u0 + v0)kp1 + 2su0q1k − 1 = 0.

We finally transform the above equation into polynomial f(x1, x2, x3, x4, x5)

a1x1 + a2x2 + a3x2x3 + a4x2x4 + a5x2x5 + a6 = 0,

where 

a1 = e,

a2 = −(N − u20 − u0v0 + u0),

a3 = 2s,

a4 = 2s(2u0 + v0),

a5 = 2su0,

a6 = −1,

and



x1 = d,

x2 = k,

x3 = 2sp21 − p1 + 2sp1q1,

x4 = p1,

x5 = q1.

We set the bounds for the unknowns

i) d < X1 = Nδ ,

ii) k = ed−1
N < X2 = Nγ+δ−1,

iii) 2sp21 − p1 + 2sp1q1 < 2sp21 + 2sp1q1

= 2sp1(p1 + q1)

= 2s(ap)
2s

(
ap+bq

2s

)
< X3 = N

2
3+2α−β ,

iv) p1 = ap
2s < X4 = N

1
3+α−β ,

v) q1 = bq
2s < X5 = N

1
3+α−β .
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We apply the Jochemsz-May strategy to solve for the roots of the polynomial. Firstly, letm, t ∈ Z+.
Define the set

S =
⋃

0≤j≤t

{xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 |x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 monomial of fm−1},

and the set
M = {monomials of xi11 x

i2
2 x

i3
3 x

i4
4 x

i5
5 f | x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈ S}.

Now we want to find the expansion of fm−1(x1, x2, x3, x4, x5). By using binomial expansion, we
obtain the following summation. Note that, we neglect the coefficients in order to avoid redun-
dancy. Thus, we have

m−1∑
i1=0

m−1−i1∑
i2=0

i2∑
i3=0

i2−i3∑
i4=0

i2−i3−i4∑
i5=0

xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 . (1)

For simplicity, the monomials of expression in (1) can be categorised as follows:

xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 ∈ S if



i1 = 0, . . . ,m− 1,

i2 = 0, . . . ,m− 1− i1,
i3 = 0, . . . , i2,

i4 = 0, . . . , i2 − i3,
i5 = 0, . . . , i2 − i3 − i4 + t.

xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M if



i1 = 0, . . . ,m,

i2 = 0, . . . ,m− i1,
i3 = 0, . . . , i2,

i4 = 0, . . . , i2 − i3,
i5 = 0, . . . , i2 − i3 − i4 + t.

DefineW = ||f(x1X1, x2X2, x3X3, x4X4x5X5||∞. Thus, we choose

W ≥ |a1|X1 = ed ≈ Nγ+δ, (2)

since the term |a1|X1 is the maximum value of our polynomial f . Next, define

R =WXm−1
1 Xm−1

2 Xm−1
3 Xm−1

4 Xm−1+t
5 .

Suppose that a6 and R do not share any common factors. Thus, we define

f ′(x1, x2, x3, x4, x5) = a−16 f(x1, x2, x3, x4, x5) (mod R).
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This is important as we want to work with a polynomial that has a constant term one. Next, define
the polynomials

g = xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 f
′Xm−1−i1

1 Xm−1−i2
2 Xm−1−i3

3 Xm−1−i4
4 Xm−1+t−i5

5 ,

with xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 ∈ S,

h = xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 R,

with xi11 x
i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M\S.

The coefficients of g and h is used to construct a basis of a lattice C with dimension

σ =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

1 =

m∑
i1=0

m−i1∑
i2=0

i2∑
i3=0

i2−i3∑
i4=0

i2−i3−i4∑
i5=0

1,

=
1

120
(m+ 1)(m+ 2)(m+ 3)(m+ 4)(m+ 5t+ 5).

In order to build a right triangular matrixM (see Table 1), we construct the following monomials
ordering: if

∑
ij <

∑
i′j then x

i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 < x

i′1
1 x

i′2
2 x

i′3
3 x

i′4
4 x

i′5
5 and the monomials are alphabeti-

cally ordered if
∑
ij =

∑
i′j .

The following form described the diagonal entries of the lattice.{
(X1X2X3X4)

m−1Xm−1+t
5 for the polynomials g,

WXm−1+i1
1 Xm−1+i2

2 Xm−1+i3
3 Xm−1+i4

4 Xm−1+t+i5
5 for the polynomials h.

Table 1: The coefficient lattice form = 2 and t = 0.

M =

1 x2 x2x5 x2x4 x2x3 x22 x22x5 x22x
2
5 x22x4 x22x4x5 x22x

2
4 x22x3 x22x3x5 x22x3x4 x22x

2
3 x1 x1x2 x1x2x5 x1x2x4 x1x2x3 x21

g0,0,0,0,0 A ** ** ** ** **
g0,1,0,0,0 A ** ** ** ** **
g0,1,0,0,1 A ** ** ** ** **
g0,1,0,1,0 A ** ** ** ** **
h0,1,1,0,0 A ** ** ** ** **
h0,2,0,0,0 B
h0,2,0,0,1 B
h0,2,0,0,2 B
h0,2,0,1,0 B
h0,2,0,1,1 B
g0,2,0,2,0 B
g0,2,1,0,0 B
h0,2,1,0,1 B
h0,2,1,1,0 B
h0,2,2,0,0 B
h1,0,0,0,0 A ** ** ** ** **
h1,1,0,0,0 B
h1,1,0,0,1 B
h1,1,0,1,0 B
h1,1,1,0,0 B
h2,0,0,0,0 B



As observed from Table 1, note that the symbol ∗∗ implies that the entry has value and the letters
A and B signify the following:

A = X1X2X3X4X5,
B = Xi1

1 X
i2
2 X

i3
3 X

i4
4 X

i5
5 R.
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Next, we define
sj =

∑
x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

ij −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

ij , (3)

for j = 1, 2, 3, 4, 5.

Taking the product of the diagonal of the lattice, we obtain the determinant of C,

det(C) =W |M\S|X
(m−1+t)|S|+(m−1+t)|M\S|+s5
5

4∏
j=1

X
(m−1)|S|+(m−1)|M\S|+sj
j ,

=W |M\S|X
(m−1+t)σ+s5
5

4∏
j=1

X
(m−1)σ+sj
j .

We obtain four new bases containing short vectors which are fi(x1X1, x2X2, x3X3, x4X4, x5X5),
for i = 1, . . . , 4 after applying the LLL algorithm to the lattice C. Each fi is a combination of g
and h, and then share the roots (d, k, 2sp21 − p1 +2sp1q1, p1, q1). Then by Theorem 2.1, we have for
i = 1, . . . , 4,

||fi(x1X1, x2X2, x3X3, x4X4, x5X5)|| < 2
σ(σ−1)
4(σ−3) det(C)

1
σ−3 .

For i = 1, . . . , 4, the polynomials fi must fulfill the bound from Theorem 2.2 which is

||fi(x1X1, x2X2, x3X3, x4X4, x5X5)|| <
R√
σ
.

An adequate condition is

2
σ(σ−1)
4(σ−3) det(C)

1
σ−3 <

R√
σ
,

which can be transformed into det(C) < Rσ , that is

W |M\S|X
(m−1+t)σ+s5
5

4∏
j=1

X
(m−1)σ+sj
j < (WXm−1

1 Xm−1
2 Xm−1

3 Xm−1
4 Xm−1+t

5 )σ,

X
(m−1+t)σ+s5
5

∏4
j=1X

(m−1)σ+sj
j

(Xm−1
1 Xm−1

2 Xm−1
3 Xm−1

4 Xm−1+t
5 )

<
Wσ

W |M\S|
,

Xs5
5

4∏
j=1

X
sj
j < Wσ−|M\S|.
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Using σ = |M | and |M | − |M\S| = |S|, we have

5∏
j=1

X
sj
j < W |S|. (4)

Using (3), we easily obtain

s1 =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

i1 −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

i1

=
1

120
m(m+ 1)(m+ 2)(m+ 3)(m+ 5t+ 4),

s2 =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

i2 −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

i2

=
1

120
m(m+ 1)(m+ 2)(m+ 3)(4m+ 15t+ 16),

s3 =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

i3 −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

i3

=
1

120
m(m+ 1)(m+ 2)(m+ 3)(m+ 5t+ 4),

s4 =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

i4 −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

i4

=
1

120
m(m+ 1)(m+ 2)(m+ 3)(m+ 5t+ 4),

s5 =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈M

i5 −
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

i5

=
1

120
(m+ 1)(m+ 2)(m+ 3)(m2 + 5mt+ 10t2 + 4m+ 10t).

Similarly, we have

|S| =
∑

x
i1
1 x

i2
2 x

i3
3 x

i4
4 x

i5
5 ∈S

1 =
1

120
m(m+ 1)(m+ 2)(m+ 3)(m+ 5t+ 4).

Set t = τm, then,

s1 =
1

120
(5τ + 1)m5 + o(m5),

s2 =
1

120
(15τ + 4)m5 + o(m5),

s3 =
1

120
(5τ + 1)m5 + o(m5), (5)

s4 =
1

120
(5τ + 1)m5 + o(m5),

s5 =
1

120
(10τ2 + 5τ + 1)m5 + o(m5),

|S| = 1

120
(5τ + 1)m5 + o(m5).
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Using (5), and after simplifying bym5, we can transform (4) into

X
1

120 (5τ+1)
1 X

1
120 (15τ+4)
2 X

1
120 (5τ+1)
3 X

1
120 (5τ+1)
4 X

1
120 (10τ

2+5τ+1)
5 < W

1
120 (5τ+1).

Replacing the values of X1, X2, X3, X4, X5 andW from (3) and (2) we get

1

120
(δ)(5τ + 1) +

1

120
(γ + δ − 1)(15τ + 4) +

1

120

(
1

3
+ α− β

)
(10τ2 + 5τ + 1)

+
1

120

(
1

3
+ α− β

)
(5τ + 1) +

1

120

(
2

3
+ 2α− 2β

)
(5τ + 1) <

1

120
(γ + δ)(5τ + 1),

or equivalently,

(30α− 30β + 10)τ2 + (60α− 45β + 45δ + 30γ − 25)τ + 12α− 9β + 12δ + 9γ − 8 < 0. (6)

Differentiate (6) with respect to τ , we obtain the optimal value τ = 9β−9δ−12α−6γ+5
4(3α−3β+1) , this reduces

to

135δ2 + (180γ + 264α− 174β − 182)δ + 144α2 − 168α+ 168αγ

− 192αβ + 63β2 − 108βγ + 110β + 60γ2 − 124γ + 63 < 0,

which is valid if

δ <
91

135
+

29

45
β − 44

45
α− 2

3
γ − 2

135

√
2(3α− 3β + 1)(−84α+ 45γ + 39β − 28). (7)

Abiding the condition in (7), we find our reduced polynomial f, f1, f2, f3, f4 that contain the de-
sired roots of (d, k, 2mp21− p1 +2mp1q1, p1, q1)which is achievable by applying the LLL algorithm
to our lattice. Then, by Assumption 1, we can extract the roots from the polynomials by using the
resultant technique. We compute ap = 2mp1 + u0 using the third root p1. Then, by taking the
gcd(N, ap) = pwill lead to the factorization of N .

4 Comparison with the Previous Attack

In this section, we present the comparison of bounds between ours and another three attacks
proposed by [14], [17], and [13]. Particularly, all the three attacks analysed the prime-power RSA
modulusN = prq. However, we only examine the case for r = 2. All the previous attacks utilised
the key equation ed− kφ(N) = 1where φ(N) = pr−1(pr − 1)(q − 1).

Note that in these previous attacks, they did not consider the case of sharing bits and their
bounds relied only on the degree of p which is r. Thus, we neutralized our bound and produce
the following corollary. By using various values of γ = logN (e), we then compare the results. Our
corollary is described as follows.

Corollary 4.1. Let the modulus of the RSA isN = p2q with the condition p = 2sp1+u0 and q = 2sq1+v0
where s, u0, v0 are knowns with 2s = Nβ . Let e ≈ Nγ , d ≈ Nδ and k is an element in Z+ satisfies
ed− k(N − p2 − pq + p) = 1. Then N can be factored if

δ <
91

135
+

29

45
β − 2

3
γ − 2

135

√
2(1− 3β)(45γ + 39β − 28).
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Table 2: Comparison of the new method with the method of [13], [14], [17] for β = 0.1.

hhhhhhhhhhhhhhhBound of δ
γ = logN (e)

γ = 0.66 γ = 0.60 γ = 0.55 γ = 0.54

Lu et al. [13] 0.22 0.22 0.22 0.22
May [14] 0.22 0.22 0.22 0.22
Sarkar [17] 0.39 0.39 0.39 0.39
Our bound in Corollary 1 0.25 0.30 0.35 0.37

Remark 4.1. Now, we will look at the bound for γ that is applicable for our attack. We can observe that
from Corollary 4.1, if we set the value of β = 0.1, then we get

δ <
997

1350
− 2

3
γ − 2

135

√
63γ − 1687

50
. (8)

Suppose that e = Nγ . From the standard RSA key equation, we have

ed = 1 + kφ(N) > φ(N) ≈ N.

Thus,

d >
N

e
= N1−γ . (9)

When considering the exponent of N from (9), thus the condition in (8) becomes

1− γ < 997
1350 −

2
3γ −

2
135

√
63γ − 1687

50 ).

A direct calculation would give us γ < 33
50 ≈ 0.66 which indicates that our attack is applicable for smaller

value of γ.

Remark 4.2. Note that for this attack, the increment of our bound could only improve the bounds from [13]
and [14]. From Table 2, it can be seen that forN is 1024-bit, we need to know s ≈ 103-bit in order to factor
the modulus provided the bound of d must fall under the unsafe bound as stated in Table 2.

5 Conclusion

This paper proposed an attack on the prime-power RSA modulus N = p2q by considering the
equation ed − k(N − (ap)2 − apbq + ap) = 1 where a

b is an unknown approximation of qp . If the
LSBs value of ap and bq are known, then N can be factored. Through our attack, we managed to
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improve the bounds of some former attacks. All in all, one needs to be cautious in choosing the
primes and decryption exponent d so that they do not satisfy the conditions that can lead to the
vulnerability of the cryptosystem.
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